Visual exploration of data by using multidimensional scaling on multicore CPU, GPU, and MPI cluster

نویسندگان

  • Piotr Pawliczek
  • Witold Dzwinel
  • David A. Yuen
چکیده

Visual and interactive data exploration requires fast and reliable tools for embedding of an original data space in 3(2)-dimensional Euclidean space. Multidimensional scaling (MDS) is a good candidate. However, owing to at least O(M) memory and time complexity, MDS is computationally demanding for interactive visualization of data sets consisting of order of 10 objects on computer systems, ranging from PC with multicore CPU processor, graphics processing unit (GPU) board to midrange MPI clusters. To explore interactively data sets of that size, we have developed novel efficient parallel algorithms for MDS mapping based on virtual particle dynamics. We demonstrate that the performance of our MDS algorithms implemented in compute unified device architecture environment on a PC equipped with a modern GPU board (Tesla M2090, GeForce GTX 480) is considerably faster than its MPI/OpenMP parallel implementation on the modern midrange professional cluster (10 nodes, each equipped with 2x Intel Xeon X5670 CPUs). We also show that the hybridized two-level MPI/CUDA implementation, run on a cluster of GPU nodes, can additionally provide a linear speedup. Copyright 2013 John Wiley & Sons, Ltd. Received 27 August 2012; Revised 15 March 2013; Accepted 17 March 2012

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplex Parallelization in a Fully Hybrid Hardware Platform

The simplex method has been successfully used in solving linear programming (LP) problems for many years. Parallel approaches have also extensively been studied due to the intensive computations required, especially for the solution of large LP problems. Furthermore, the rapid proliferation of multicore CPU architectures as well as the computational power provided by the massive parallelism of ...

متن کامل

Interactive Data Mining by Using Multidimensional Scaling

Blind choice and parameterization of data mining tools often yield vague or completely misleading results. Interactive visualization enables not only extensive exploration of data but also better matching of clustering/classification schemes to the type of data being analyzed. The multidimensional scaling (MDS), which employs particle dynamics to the error function minimization, is a good candi...

متن کامل

Visual Exploration of Data with Multithread MIC Computer Architectures

Knowledge mining from immense datasets requires fast, reliable and affordable tools for their visual and interactive exploration. Multidimensional scaling (MDS) is a good candidate for embedding of high-dimensional data into visually perceived 2-D and 3-D spaces. We focus here on the way to increase the computational performance of MDS in the context of interactive, hierarchical, visualization ...

متن کامل

General-purpose molecular dynamics simulations on GPU-based clusters

We present a GPU implementation of LAMMPS, a widely-used parallel molecular dynamics (MD) software package, and show 5x to 13x single node speedups versus the CPU-only version of LAMMPS. This new CUDA package for LAMMPS also enables multi-GPU simulation on hybrid heterogeneous clusters, using MPI for inter-node communication, CUDA kernels on the GPU for all methods working with particle data, a...

متن کامل

Evaluating Visual Preferences of Architects and People Toward Housing Facades, Using Multidimensional Scaling Analysis (MDS)

One of the most important issues that have absorbed the public opinion and expert community during the recent years, is the qualitative and quantitative aspects of the housing. There are several challenges related to this topic that includes the contexts of the construction, manufacturing, planning to social aspects, cultural, physical and architectural design. The thing that has a significant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Concurrency and Computation: Practice and Experience

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2014